skip to main content


Search for: All records

Creators/Authors contains: "Xu, Bohan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ferroelectric hafnium-zirconium oxide (HZO) is an excellent candidate for low-power non-volatile memory applications due to its demonstrated ferroelectricity at the nanoscale and compatibility with silicon-based technologies. The interface of HZO in contact with its electrode, typically TiN in a metal–ferroelectric–metal (MFM) capacitor configuration, is of particular interest because factors, such as volume confinement, impurity concentration, interfacial layers, thermal expansion mismatch, and defect trapping, are believed to play a crucial role in the ferroelectric performance of HZO-based devices. Processing variables, such as precursor type, oxygen source, dose duration, and deposition temperature, are known to strongly affect the quality of the oxide–metal interface. However, not many studies have focused on the effect of breaking or maintaining vacuum during MFM deposition. In this study, sequential, no-atmosphere processing (SNAP) is employed to avoid atmospheric exposure, where electrode TiN and ferroelectric HZO are deposited sequentially in the atomic layer deposition chamber without breaking vacuum. The effect of breaking vacuum during the sequential deposition steps is elucidated by fabricating and characterizing MFM capacitors with and without intentional vacuum breaks prior to the deposition of the HZO and top TiN. Using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS), we reveal that breaking vacuum after bottom TiN electrode deposition leads to interfacial oxidation and increased carbon contamination, which preferentially stabilizes the non-ferroelectric tetragonal phase and lead to diminished remanent polarization. Avoiding carbon impurities and interfacial TiOx at the HZO and TiN interface using SNAP leads to heightened remanent polarization, reduced leakage current density, and elimination of the wake-up effect. Our work highlights the effect of vacuum breaking on the processing-structure-properties of HZO-based capacitors, revealing that maintaining vacuum can significantly improve ferroelectric properties.

     
    more » « less
    Free, publicly-accessible full text available June 14, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less
  4. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  5. Recently discovered diamond nanothreads offer a stiff, sp 3 -hybridized backbone unachievable in conventional polymer synthesis that is formed through the solid-state pressure-induced polymerization of simple aromatics. This method enables monomeric A-B alternation to fully translate from co-crystal design to polymer backbone in a sequence-defined manner. Here, we report the compression of aryl:perfluoroaryl (Ar/ArF) co-crystals containing –OH and –CHO functional groups. We analyze the tolerance of these functional groups to polymerization, explore the possibility of keto–enol tautomerization, and compare the reaction outcomes of targeted solid-state Ar/ArF design on nanothread formation. Two new co-crystals comprising phenol:pentafluorobenzaldehyde (ArOH:ArFCHO) and benzaldehdye:pentafluorophenol (ArCHO:ArFOH) were synthesized through slow solvent evaporation. Analysis of the single-crystal structures revealed different hydrogen bonding patterns between the –OH and –CHO in each solid (tape and orthogonal dimers, respectively), in addition to markedly different π–π stacking distances within the Ar/ArF synthons. In situ Raman spectroscopy was used to monitor the compression of each co-crystal to 21 GPa and illustrated peak shifts for the –OH and –CHO stretching regions during compression. Photoluminescence corresponding to polymerization appeared at a lower pressure for the co-crystal with the smallest π–π stacking distance. Nevertheless, the recovered solid with the larger centroid : centroid and centroid : plane π–π stacking distances featured a diffraction ring consistent with the anticipated dimensions of a co-crystal-derived nanothread packing, indicating that both functional group interactions and parallel stacking affect the pressure-induced polymerization to form nanothreads. IR spectroscopy of the recovered samples revealed large shifts in the –OH & –CHO stretching regions, particularly noticable for ArCHO:ArFOH, which may reflect geometrical constraints associated with forming a rigid thread backbone under pressure. Simulation suggests that hydrogen bonding networks may affect the relative compressibility of the co-crystal along a thread-forming axis to modulate the propensity for nanothread formation. 
    more » « less